Wednesday, January 4, 2012

Continental Drift

An appropriately timed article appeared in ScienceDaily.com today on the 100th anniversary of Continental Drift.  Alfred Wegener first made his idea public in 1912.  He published a book on the subject in 1915.

Given our recent coverage of Wegener and his landmark hypothesis, the article is very interesting.


Flipped from Head to Toe: 100 Years of Continental Drift Theory

ScienceDaily (Jan. 4, 2012) — Exactly 100 years ago, on 6 January 1912, Alfred Wegener presented his theory of continental drift to the public for the first time. At a meeting of the Geological Association in Frankfurt's Senckenberg Museum, he revealed his thoughts on the supercontinent Pangaea, which broke apart and whose individual parts now drift across Earth as today's continents. In 1915, he published his book "The Origin of Continents and Oceans." Its third edition in 1922 was translated into the languages ​​of the world and today is considered the foundation stone of plate tectonics.
Wegener's genius idea did not only find friends, because it had the main disadvantage that it lacked the engine to break apart the supercontinent and move huge continental masses over Earth's surface. Indeed, only by the seismology of the 1950s and through scientific drilling in the oceans in the 1960s, the foundation for plate tectonics was laid -- at the same time, however, Wegener's groundbreaking theory was turned upside down.
Seismological insights
Earthquakes are not only terrible natural disasters, they also offer a view inside Earth. It was the geophysicists Wadati and Benioff, who in 1954 independently discovered the systematic arrangement of earthquakes in the places which we now know as plate boundaries. "More than 90% of the global seismic energy is released at the plate boundaries," says Professor Michael Weber, head seismologist at the German Research Centre for Geosciences GFZ. "We use these earthquakes for tomographic screening of the Earth." With modern methods of scientific seismology it is even possible to reconstruct how quickly the continents moved. The speed record is held by India, which started to make its way from East Gondwana ​​to Eurasia about 140 million years ago -- at a speed of 20 centimeters per year.
Drilling into the ocean floor
The real breakthrough, however, came only when those findings were combined with the research results from the great ocean drilling programs of the sixties. Previously, using magnetic measurements of the ocean floor and topography of the seabed the mid-ocean ridges had been discovered, as well as a magnetic polarization of the rocks in parallel strips either side of mid-ocean ridges. Now, the obtained cores showed: No piece of the drilled ocean floor was older than 200 million years, and therefore decidedly younger than Wegener had assumed. Continental rocks, in contrast, can achieve an age of more than four billion years. Secondly, it could be shown that the ocean floor is very young in the immediate vicinity of the mid-ocean ridges. With increasing distance from these undersea mountains, the rocks exhibit an increase in age. Thirdly, the ocean floors below the top layer of sediment are entirely of magmatic origin. "These results could in fact only allow one interpretation. From the interior of the Earth, hot, liquid rock rises to these ridges and pushes the ocean floor off to the side", explains Dr. Ulrich Harms, who at the GFZ directs the "Centre for Scientific Drilling." "Not the continents drift, but entire tectonic plates, which consist of continents , ocean floors, and parts of the upper mantle."
Ascending rocks and the engine of plate tectonics
All these findings in the second half of the sixties put Wegener's ingenious discoveries into a correct context, and also flipped his theory from the head to its feet: not only were his assumptions as to the age of oceans and continents completely reversed, the idea that the continents plow the ocean turns around so that continents and oceans move together as a common upper part of the lithospheric plates. The continents float on top as the lightest rocks, so to speak.
These tectonic plates move, collide, grind past each other or drift apart. All these processes are associated with earthquakes, which can thus be explained as part of the overall process. But what forces the heavy rock inside Earth to rise? The enormous heat inside Earth's core and mantle comes in one part from the formation of Earth, in another from the radioactive decay of elements in the mantle. The heated rock rises and induces the movement expressed on the surface as a displacement of the plates.
The quiet revolution in the theory of tectonics
The classical concept of tectonics as a quasi mechanical process of the movement and collision of rigid plates is now itself in disarray. "Recent findings show plate tectonics as a self-regulating system of interactions, in which all the subsystems of the planet earth are involved", explains Professor Onno Oncken. The Director of the Department "Geodynamics" at GFZ notes: "It is not a mechanical system, but rather complex feedback processes." The climate as example: high-altitude mountains have a decisive influence on the climate, of course. But that the climate in turn controls the tectonics, is a new discovery: the Andes, for example, are caused by the collision of the Nazca plate with South America. The humid climate of the South Andes leads to the erosion of material that ends up as sediment in the Pacific. The Nazca plate approaching from the west deposits this rock on the South American crust. The arid climate of the Northern and Central Andes, however, gives rise to no sediment, therefore the Nazca plate rasps off the continental crust here. The thus created great increase in friction in turn transmits a force that causes the Andean plateau to gain height and width. This in turn enhances the rain shadow on the west side of the Andes and additionally reduces erosion.
The classical notion of folded mountains as a result of a collision also had to be revised: "The Andes, for example, in their present form, exist for about 45 million years, the subduction of the Nazca plate beneath South America has been going on since the Paleozoic, so hundreds of millions of years longer," says Onno Oncken. Similarly, the interplay between the hot, rising rock masses and Earth's crust is much more complex than originally thought. When a hot rock bubble rises, the poorly heat-conductive lithosphere acts as a boundary layer to the surface like a blanket, which in turn increases the temperature further below. This heat buildup can eventually soften whole continents like a welding torch until they dissolve, as it happened around 140 to 130 million years ago, when Gondwana fell apart first in the East, then in the West.
At that time Africa also separated from South America, but it was exactly the contours of these two continents that sparked Wegener's idea. Professor Oncken: "Wegener's approach was the starting point, the plate tectonics of the previous century was the revolution in geoscientific perception. Today we see an equally thorough, quiet revolution in the theory of plate tectonics, because we understand our planet increasingly as a complete system."
Recommend this story on FacebookTwitter,
and Google +1:
Other bookmarking and sharing tools:

Story Source:
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

 APA

 MLA
Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences (2012, January 4). Flipped from head to toe: 100 years of continental drift theory. ScienceDaily. Retrieved January 4, 2012, from http://www.sciencedaily.com­/releases/2012/01/120104133151.htm
Note: If no author is given, the source is cited instead.
Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

Tuesday, December 20, 2011

Soil and Water Contamination

Given our relatively recent study of soil, running water, groundwater, and the interactions between three, I thought the linked article is a timely topic to read more about.

The article looks at a new method of removing heavy metal contamination.  That had not been such an easy task.

Click the link and read on to learn more about it.  Heavy Metal Remediation

Wednesday, December 14, 2011

Thermonuclear Explosions

Here's an interesting article about type 1a supernovas, the largest explosions known to man.


'Supernova of a Generation' Shows Its Stuff: Astronomers Determine How Brightest and Closest Stellar Explosion in 25 Years Happened

ScienceDaily (Dec. 14, 2011) — It was the brightest and closest stellar explosion seen from Earth in 25 years, dazzling professional and backyard astronomers alike. Now, thanks to this rare discovery -- which some have called the "supernova of a generation" -- astronomers have the most detailed picture yet of how this kind of explosion happens. Known as a Type Ia supernova, this type of blast is an essential tool that allows scientists to measure the expansion of the universe and understand the very nature of the cosmos.
"What caused these explosions has divided the astronomical community deeply," says Shri Kulkarni, the John D. and Catherine T. MacArthur Professor of Astronomy and Planetary Sciences. But this new supernova -- dubbed SN2011fe -- can help astronomers solve this longstanding mystery. "SN2011fe is like the Rosetta Stone of Type Ia supernovae," says Kulkarni, who is also the principal investigator on the Palomar Transient Factory (PTF). Led by the California Institute of Technology (Caltech), the PTF is designed to survey the skies for transient flashes of light that last for a few days or months, such as those emitted by exploding stars.
On August 24, the PTF team discovered the supernova in one of the arms of the Pinwheel Galaxy (also called M101), 21 million light years away. They caught the supernova just 11 hours after it exploded.
"Never before have we seen a stellar thermonuclear explosion so soon after it happened," says Lars Bildsten, professor of theoretical astrophysics at the Kavli Institute for Theoretical Physics at UC Santa Barbara, and member of the PTF team, which described its supernova findings in the December 15 issue of the journal Nature.
The PTF team uses an automated system to search for supernovae, and because they were able to point their telescopes at SN2011fe so quickly after its detonation, the astronomers were able to put together a blow-by-blow analysis of the explosion, determining that the supernova involves a dense, Earth-sized object called a white dwarf and, most likely, a main-sequence star (a star in the main stage of its life).
Scientists have long suspected that Type Ia supernovae involve a binary system of two stars in orbit around each other, with one of those stars being a white dwarf. The white dwarf, which is made out of carbon and oxygen, explodes when matter from its companion star spills over onto its surface. But no one is sure what kind of star the companion is. Scientists have suggested that it's another white dwarf, a main-sequence star, a helium star, or a star in a late life stage that's puffed up into a red giant.
Still, because the explosion always involves a white dwarf, its overall brightness and behavior is relatively predictable, making it a useful tool for measuring distances. Since all Type Ia supernovae produce about the same amount of light, those that appear dimmer must be farther away. In this way, by measuring the brightness of supernovae, astronomers can use them as cosmic meter sticks to determine the size of the universe -- and how fast it's expanding. In fact, the work that earned the 2011 Nobel Prize in physics -- the discovery that expansion of the universe is speeding up -- was based on observations using Type Ia supernovae.
"This discovery is exciting because the supernova's infancy and proximity allows us to directly see what the progenitor system is," explains Mansi Kasliwal, an astronomer at the Carnegie Institution for Science who is a recent Caltech doctoral graduate and a coauthor on the paper. "We have expected for a while that a Type Ia supernova involves a carbon-oxygen white dwarf, but now we have direct evidence."
In the case of SN2011fe, the researchers were also able to deduce, by process of elimination, that the companion star is most likely a main-sequence star. How do they know?
If the companion was a red giant, the explosion of the white dwarf would send a shock wave through the red giant, heating it. This scenario would have generated several tens of times more light than the astronomers observed. Additionally, it happens that the Hubble Space Telescope took images of the location where SN2011fe lived before it blew up. When the researchers looked at the data, they found no evidence of red giants or helium stars.
If the companion was another white dwarf, the interactions between the companion and the explosion would produce light in the optical and ultraviolet wavelengths. Since none of this sort of radiation was seen coming from SN2011fe, it is less likely that the companion was a white dwarf.
These results -- which they describe in a companion paper in the same issue of Nature -- along with X-ray and radio observations that also fail to see any evidence for red giants or helium stars, rule those out as the companion. Caltech postdoc Assaf Horesh is the lead author on the paper describing the X-ray and radio data, which will be published inThe Astrophysical Journal.
The astronomers have also observed, in unprecedented detail, the material that's blown off during the explosion. In particular, the team detected oxygen hurtling out from the supernova at speeds of over 20,000 kilometers per second -- the first time anyone has seen high-speed oxygen coming from a Type Ia supernova, according to the researchers. "These observations probe the thin, outermost layers of the explosion," Bildsten says. "These are the parts that are moving the fastest, for which we have never been able to see this mix of atomic elements."
Not only was the supernova detected quickly, but the data processing -- performed by researchers led by Peter Nugent, staff scientist at Lawrence Berkeley National Laboratory -- was also done within hours. The machine-learning algorithms developed by Joshua Bloom, an associate professor at UC Berkeley, also helped make the fast find possible. And because the astronomers caught the blast so soon after it ignited, and because it's so close, the researchers say SN2011fe will become one of the best-studied supernovae ever.
"The rapid discovery and classification of SN2011fe -- all on the same night -- is a testament to the great teamwork between all the researchers from over a half a dozen institutions," Kulkarni says. "The future looks very bright. Soon we should be finding supernovae at an even younger age and thereby better understand how these explosions happen."
Nugent is the lead author on the Nature paper, which is titled, "Supernova 2011fe from an exploding carbon-oxygen white dwarf star." The lead author on the companion paper, "Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe," is Weidong Li of UC Berkeley. The Astrophysical Journal paper is titled, "Early radio and X-ray observations of the youngest nearby type Ia supernova PTF11kly (SN 2011fe)."
The Palomar Transient Factory (PTF) uses the 48-inch Oschin Schmidt telescope and the 60-inch telescope of the Palomar Observatory of Caltech for its observations and is a collaboration between Caltech, Columbia University, Las Cumbres Observatory Global Telescope, Lawrence Berkeley National Laboratory, Oxford University, UC Berkeley, and the Weizmann Institute of Science.
Recommend this story on FacebookTwitter,
and Google +1:
Other bookmarking and sharing tools:

Story Source:
The above story is reprinted from materials provided byCalifornia Institute of Technology. The original article was written by Marcus Woo.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal References:
  1. Peter E. Nugent, Mark Sullivan, S. Bradley Cenko, Rollin C. Thomas, Daniel Kasen, D. Andrew Howell, David Bersier, Joshua S. Bloom, S. R. Kulkarni, Michael T. Kandrashoff, Alexei V. Filippenko, Jeffrey M. Silverman, Geoffrey W. Marcy, Andrew W. Howard, Howard T. Isaacson, Kate Maguire, Nao Suzuki, James E. Tarlton, Yen-Chen Pan, Lars Bildsten, Benjamin J. Fulton, Jerod T. Parrent, David Sand, Philipp Podsiadlowski, Federica B. Bianco, Benjamin Dilday, Melissa L. Graham, Joe Lyman, Phil James, Mansi M. Kasliwal, Nicholas M. Law, Robert M. Quimby, Isobel M. Hook, Emma S. Walker, Paolo Mazzali, Elena Pian, Eran O. Ofek, Avishay Gal-Yam, Dovi Poznanski. Supernova SN 2011fe from an exploding carbon–oxygen white dwarf starNature, 2011; 480 (7377): 344 DOI:10.1038/nature10644
  2. Weidong Li, Joshua S. Bloom, Philipp Podsiadlowski, Adam A. Miller, S. Bradley Cenko, Saurabh W. Jha, Mark Sullivan, D. Andrew Howell, Peter E. Nugent, Nathaniel R. Butler, Eran O. Ofek, Mansi M. Kasliwal, Joseph W. Richards, Alan Stockton, Hsin-Yi Shih, Lars Bildsten, Michael M. Shara, Joanne Bibby, Alexei V. Filippenko, Mohan Ganeshalingam, Jeffrey M. Silverman, S. R. Kulkarni, Nicholas M. Law, Dovi Poznanski, Robert M. Quimby, Curtis McCully, Brandon Patel, Kate Maguire, Ken J. Shen. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011feNature, 2011; 480 (7377): 348 DOI:10.1038/nature10646
 APA

 MLA
California Institute of Technology (2011, December 14). 'Supernova of a generation' shows its stuff: Astronomers determine how brightest and closest stellar explosion in 25 years happened. ScienceDaily. Retrieved December 14, 2011, from http://www.sciencedaily.com­/releases/2011/12/111214135748.htm
Note: If no author is given, the source is cited instead.
Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

Sunday, December 11, 2011

Yellowstone National Park

Check out this fascinating article about the geothermal activity at Yellowstone National Park.  The park sits atop a "sleeping giant" volcano.

Science Daily Article - Yellowstone

Tuesday, December 6, 2011

How About That Weather?

Our weather has been abnormally warm so far this autumn, largely due to La Nina (most likely).  Remember the severe thunderstorms and tornadoes earlier this year? Here's an interesting explanation for them.


Global Winds Could Explain Record Rains, Tornadoes

ScienceDaily (Dec. 5, 2011) — Two talks at a scientific conference this week will propose a common root for an enormous deluge in western Tennessee in May 2010, and a historic outbreak of tornadoes centered on Alabama in April 2011.
Both events seem to be linked to a relatively rare coupling between the polar and the subtropical jet streams, says Jonathan Martin, a University of Wisconsin-Madison professor of atmospheric and oceanic sciences.
But the fascinating part is that the change originates in the western Pacific, about 9,000 miles away from the intense storms in the U.S. midsection, Martin says.
The mechanism that causes the storms originates during spring or fall when organized complexes of tropical thunderstorms over Indonesia push the subtropical jet stream north, causing it to merge with the polar jet stream.
The subtropical jet stream is a high-altitude band of wind that is normally located around 30 degrees north latitude. The polar jet stream is normally hundreds of miles to the north.
Martin calls the resulting band of wind a "superjet."
Jet streams in the northern hemisphere blow from the west at roughly 140 miles per hour, and are surrounded by a circular whirlwind that looks something like a tornado pushed on its side. The circulating wind at the bottom of the jet stream blows from the south. On the north side, the circulating winds turn vertical, lifting and cooling the air until the water vapor condenses and feeds precipitation.
A superjet and its circulating winds carry roughly twice as much energy as a typical jet stream, Martin says. "When these usually separate jet streams sit atop one another, there tends to be a very strong vertical circulation, which produces clouds, precipitation and tornadoes under the right conditions."
And because the circulating wind in a superjet moving across the U.S. south picks up moisture from the Gulf of Mexico, "the superjet gives a double-whammy -- more moisture, and more lifting, producing that intense rain."
That was the case in May 2010, when 10 to 20 inches of rain fell around Nashville.
Andrew Winters, who is now a graduate student studying with Martin, latched onto the Tennessee flood as the topic of his senior undergraduate thesis in 2010. "It had a lot of interesting aspects, brought an anomalous amount of moisture into the southeast, and that hefty amount of rain," Winters says.
And that super-strong jet stream "could be traced back to conditions in the western Pacific, almost a week earlier," Winters says.
Martin and Winters describe their work in talks Dec. 6 and 7 at the annual meeting of the American Geophysical Union in San Francisco.
Studies of the Tennessee floods, the Alabama tornados, and an odd October storm in Wisconsin showed "that when the subtropical jet is pushed poleward under the influence of strong thunderstorms in the western Pacific, it seems to result in these intense storms in the U.S. midsection," Martin says. "It's a really fascinating global connection that occurs seven to 10 days later."
Martin also suggests the altered position of the subtropical jet stream may be linked to global warming.
"There is reason to believe that in a warmer climate, this kind of overlapping of the jet streams that can lead to high-impact weather may be more frequent," Martin says.
That idea can be tested, Martin adds.
"Historic weather data should tell us whether there has been a change in the frequency of these overlapping events, and whether that might be linked to a change in high impact-weather events. It's an interesting lead that could help us understand one possible mechanism by which a warmer climate could lead to an increase in severe weather," he says.
Although hurricanes can be tracked for a week or more as they cross the Atlantic Ocean, weather phenomena seldom last so long, Martin says. "If the subtropical jet stream is rearranged and superposed on top of the polar jet stream, it might be the mechanism that allows for this very long delay, a disturbance that can have discernible effect on severe weather thousands of miles downstream, and a week or more later."
Martin says that if the new analysis survives further study, it could contribute to severe weather forecasting.
Though severe weather was forecast a day or two in advance of the deadly tornado outbreak in the Southeast this April, "most tornado forecasts are made 12 or at most 24 hours in advance. That saves lives. But if we get the idea five or six days in advance that we should watch the position of the jet streams, we could say, 'Hey, we have a pretty exciting week coming up, we have to be on high alert.'"